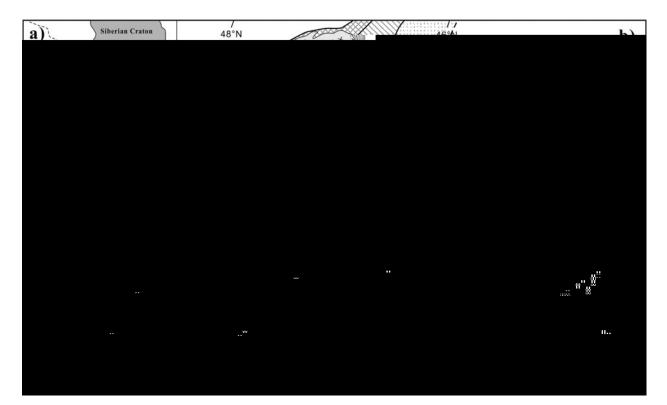

Geol. Mag. 154 (3), 2017, pp. 419–440. Cambridge University Press 2016 10.101 / 0016 56 16000042

(Received 1 2015 accepted a a 2016 first published online 1 2016)

Abstract e e e e a aea e e e a aa e e e e e e aea e e ea e a e e e e (e a e a e a e) e ca c e a e. e a e acaacca a e a e e aea e a e $a \sim 45$ a e e e e e e e a ~ 400 a. e a e a e e e a e e e e e. a e aa eee e a aea e e e e a e e е. a e e e eea a ε (t) (13 20) a a e δ^1 (+5.3 %) a e e e ae a e . . a e e a a e e a e ee a e . e. e e a a a e ae a e aa e acaaca ee e e 2 2 -eae e a a e e e ea e a a e a / 2 e aa ee e e ae a a e e е, e aea a ea e e e e e ee eea ea ea e, ae, a-ea ea e a e е. a ea. e ea e e e ea a,a e e ea e ea ee e a e aea a a e a e e e. ae, e e ea е . e e a e 2 e 2 e e е. e - 2 e

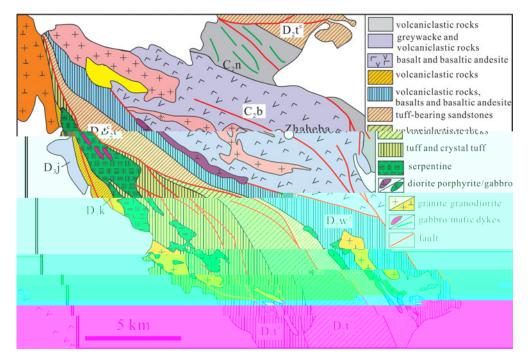
e , aca e, -e,ae e, caa ee(), ...aeae.

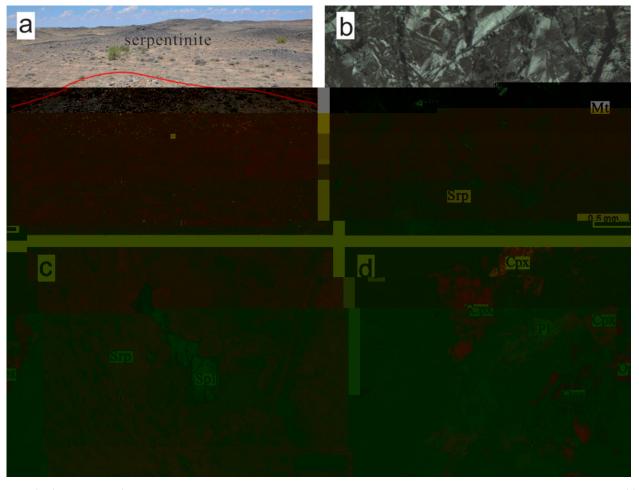

1. Introduction

e ee e . e, a e a e ae eea . . C e a a- ea e a - e e a e (e. . a *et al.* 200 e & e, 200 e a a et al. 2012 a *et al.* 2012, 2013 **a a** *et al.* 2013), **a** a a a a a e e ea a e, e ea e a 2 e e e e *et al.* 200 e e (_ , 1 2 a et al. 200 a). a a e a ee e e е. e eee-. C e (e a , 1 e a , 1 ,1 3 a a e e et al. 2000 e & e, 2003 a et al. 200 ea e, 2014). e & e (2011) a aee е, ., **c a** e e a a ea e, . a- . . e e, (), a a a a e a. _ , ea e (2014) e _ eee e e e

e , .e. e a ea e e e e e. ea e e e e e, ea e e e e e e e e a e. 2 -2 e- . e.

a e e e e a e e e e e a a e e (), e a e ae a e a e e & a, 1 3 a (e . ö , ⊨ a a & e, 2000 e et al. 2002 a et al. 2004, 200 a (. . 1a). ea e e e e a e ea e , a e e e -(**a** et al. 200 a,b e е, , 2012). ea e a , e & a a e , e e e e e a e acec c c e e a e ea , , e ea e , e aaaa e aea a a, a , 1 3 **a** et al. 2003 **a** et al. (a. 2003 a et al. 200 a) (... 1). a a a -e, e ea a , e ae , , e e


^{†.} e e e . a 16. a.



2. Regional geology, field observations and petrography

e e aca e e e e e ee e e a e a e a a , e ...e . e a e е, е . a . e a e (1, 2). e a aa a e a a a 👘 💈 a a a e. e a e ae e a 2 ea ee a ca 15 ... ac a c. c. c. e e . e . e a . . a e e e e e e e a a e e e a e e e (. .2, ee e). a a aa e 1 aa 5 e a e a 1 a e ee ecce. , ecaa cec , , a c ccc c ccc -

e e > 0% e e e,a e (...3,). a e e e e aa e e a e cecea e - . ee a e a e (e. . a *et al.* 2013). e e e e a -e e - e . e a a e eea a a e (40 0%) a e e (30 50%) a e a ce (5 10%) a a a c (. . 3). c ca ce ca ce a ac a ce e . . ea ae e . . a e ae ae a a e e **a** ea, ee e e 2 e e e aea a e e a e a a e a c e a - e . e e a e e e a a e e e e a . a c. . c. a. (.)a)a e e e a e a a a (a () (a et al. 2006). e e a a e e a e e e a e a e a ea e e a 2 2 a a 2 2 e aa. e e e a a ee a e a e e a a , **e** .. a a 2 e (. 2). 2 e, - ca e e e aee a e a a aa a e aaa ee,a e a ea.e a ea . aa a a e a ee e e a a e e aa e e e e a e e e a a e aaea a, 13). e e (a

e 3. (e) e e e e e aea e. (a) e \mathbf{e} > 0% \mathbf{e} \mathbf{e} e e a e e e e e e a a e.() eea e e. e e e a a e a e. e e e e e e. a a e e e

a	a	С.	a	e	e	a	aaae	-
e	e	a e			e	е .	e.	

3. Analytical procedures

3.a. Zircon U-Pb dating and Hf-O isotope analysis

ee eaae a 2 e °24 01, 46° 32 51 (2013) a 2 , °'2 36 **e** (2013 $02,46^{\circ}332$ a) e e e . a e e e e e e eaa a e e 2 a a e e е. e e e e e a a e e. eee e a e 2 a e e e e e e e e a a e e e e e a e e e e a a e e e () ae e ea e . . **c**. a e a e e eeaa e eaea e e e e) a 2 2 (e a e a e a e e 2 ee e a e a e e е, е. e aa a e e a e ce e e e *et al.* (2011). e eeaa e e a e a e e aa e. aa e a e e e **a a a** (... et al. 2010) a (. , 2003). e e e ea acac ca c 5% e e e e . a e aaa e ae e e e e a aea a e la e e a a e a a e 2, e e e,aae . // / e . a.a a ea e.

e e e e ea . e e 12 0 a e a e e e e a e e e e e aa a e e e e e /16 ea e^{-1} *et al.* (2010*a*). a e e e a ea a e 2 2 ea $,^{1}$ /¹⁶ = 0.0020052), ae (e a a e e e e 2 2 () . e a 2 2 e e -2 $\mathbf{a} \, \delta^1$ a.e 5.31‰ (et al. eeaa 2010b). e ca e c e e e 2 e a e e ea δ^1 $5.44 \pm 0.21 \% (2)$, e ce c a c $5.4\pm0.2\,\%$ e *et al.* **2013**). (e aaae e ae a e 3aaa ea e e a С. ,// . **a . a** e. . / e .

3.b. Mineral analysis

e a e e e e e e - e 00 eeae aee e e e e e ee a e e e e e e ae ee. e a 15 ee 15 e a ee a aea

ea	. e	-	20		e.	eee-
a e	e a	a	aa ae	e		e
e e	a	ae a	a e 4	4 a	5 a	aaea
. //	. a	. a	e. / e	.		

3.c. Whole-rock analysis

e-2 - a a e-e e e e e a a e a . a . e e e e ee. ae a ee e e e 100**e** e **a** . eeaa a eaa e e e et al. a e (2004).eea 2 e e e 2%. acee e eeaa e 2 e 6000 e e e *et al.* (2004). 50 e e e e e ea a e ee e a e e e a +3 e. e a e 2 2 2 ee e a -2 a -2, -1, e 2 -1 a a e e e a 2 2 3, e e e a a ee e e ea e е. a a e ee e 2 e e a 3 5%. eaa a e a e 1. ae e

ea. . е е e e 2 e e e e 3 e eaae e e e e e e 2 е. e ea e e e e a e e e e e e e (e e-) 2 e ae e 2 e e e e e e e ae e e. e ea e e e a ee *et al.* (2004). / 6 e e ea e e /144 143 6 / a e e a a e /144 146 0.11 4 a = 0. 21, e e e. e / 6 a e a e a e e 0. 102 ea e e a a a 0. 0506 -1, a e¹⁴³ /¹⁴⁴ e e 0.512104 acaca 0.5126 1 -1. eaa a e a 1 a ac aa cc ac c **a** e 2. a

4. Analytical results

4.a. Zircon U–Pb ages

e a eae e 2 2 2 . е. a e e 2 100 150 μ **a** a a e a 1.1 21. ae, e e 2 ea.e aa e . 4a). 2 2 2 (ee e a a ee e e, a a a e (22 123 (e e) a 5 / 0.4) e a 2 0. . 30 e -ee aa e e e a e aa 4 5. ± 2.5 a a e a e e ea a e a

a el. e	e a	e e e	e,aea	aa ca	lea e	e				
a e e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
					Major element.	5 (%)				
2	3.0	4 .20	3.41	3.62	3.22	3.2	3 .05	4 .22	46.4	51.2
2	0.05	0.20	0.05	0.05	0.04	0.05	0.04	0.14	0.12	0.2
2 3	0.61	1.6	1.04	0.6	0.0	0.4	0. 0	1.2	1.64	1.33
e ₂ 3	.44	4.6		.36	.5	.16	. 4	3.6	3.24	3.
2 5	0.0	0.10	0.11	0.11	0.11	0.0	0.11	0.0	0.0	0.0
	3.21	24.5	3.2	3	3.0	3.31	3.44	10.04	.03	5.
2	0.12	15.42	0.15	0.14	0.2	0.10		-)-2 61421	100	

a e l		e
-------	--	---

a e e	2013 01-1	2013 01-3	20132 01-4	2013 01-5	2013 01-6	2013 01-	2013 01-	2013 01 1	2013 01 2	2013 01 4
	0.005	0.064	0.00	0.005	0.00	0.003	0.003	0.051	0.044	0.222
	0.000	0.34	0.00	0.042	0.0 2	0.031	0.033	0.310	0.25	1.450
	0.004	0.04	0.00	0.00	0.011	0.005	0.005	0.04	0.043	0.21
-	0.011	0.232	0.036	0.044	0.012	0.034	0.00	0.123	0.0 0	0. 3
a	0.0 0	0.036	0.03	0.03	0.06	0.026	0.025	0.046	0.031	0.06
	0.26	1. 10	6.600	1. 0	0. 3	0.233	1.150	1.5 0	0.516	0.1 5
	0.406	0.0 2	0.12	0.112	0.0	0.1	0.054	0.16	0.1 1	0.6 5
	0.046	0.034	0.014	0.02	0.050	0.030	0.010	0.050	0.02	0.130
	0.1 1	0.144	0.203	0.364	0.042	0.0 4	0.0	0.066	0.042	0.0 3
a e	2013 01 5	2013 01 6	2013 01	2013 01	2013 01	2013 03 2	2013 03 3	2013 03 4	2013 03 5	2013 01 3
e			(1)	(1)	(1)	(1)	(1)	(1)	(1)	(2)
					Major elements	(%)				
2	4.1	45.	4.	53.1	51.1	50.40	50.54	50.52	51.22	52.3
2	0.34	0.15	1.40	1.24	1.31	1.0	1.63	1.31	1.1	0.33
2 3	1.	1.5	16.5	16.1	15. 3	15.	16. 6	15.55	15.4	1 .61
e _{2 3}	4.52	3.34		.11	.43	.0	.50	.42	. 2	3.44
	0.0	0.0	0.11	0.10	0.11	0.13	0.11	0.14	0.12	0.0
	6.	.42	4. 0	4.2	4.41	5.	3.2	6.06	.14	4.
a	11.03	12.61	6.22	5.5	6.3	6. 5	4.52	.4	.26	. 0
\mathbf{a}_2	4. 6	.3	. 2	.3	.00	4.52	.31	4. 0	4.0	.11
2	0.13	0.11	0.3	0.31	0.42	2.04	0.33	1.2	2.03	0.1
2 5	0.04	0.02	0.62	0.62	0.65	0. 4	0.6	0.4	0.44	0.04
	3. 2	3.26	4.24	2.54	2. 3	2.2	5.14	2.65	1.3	2.
	. 5	. 2	. 6	. 0	.4	.40	. 1	.6	.6	. 1
	4.	.4	.11	. 0	.42	6.56	.64	6.0	6.11	.2
. #	5	1	55	54	54	56	41	56	64	4
	0		1.16	1.10	Trace elements (p		10.1	5.0	6.2	
	.0	4. 5	1.16	1.12	1.4	.0	40.4	5.2	6. 2	5. 1
e	0.22	0.135	1.2 4	1.6 3	1.316	1. 53	1.034	1.100	0.5 5	0.62
	25.0	23.	1.6	1.5	1.5	.5	1.2	25.2	1.	10
	11	3.	1 6	166	1 2	22	22	254	1	5.
	34.	163	60.5	62.6	64.1	116	1.	0.	203	23.
	24.2	21.6	26.	23.6	24.6	2.	2.5	2 .0 5 .3	2.0	16.4
	4.	1 5	63.6	50.	51.4	6.	2.	5.3	132	1.1

`; . a e l. e

a	e	2013	01 5	2013	01 6	2013	01	2013	01	2013	01	2013	03 2	2013	03 3	2013	03 4	2013	03 5	2013	01 3
	e						(1)		(1)	(1)	((1)		(1)	(1)	(1)	((2)
a		3.		1.	.20	3	.60	46	. 0	4	.30	23	3.40	43	3.00		.20	32	. 0	6	.56

a e l. e

a e	2013 01 11	2013 02 1	2013 02 2	2013 03 1	2013 03 6	2013 01 10	04 06	04 24	04 2	03 1
e	(2)	(2)	(2)	(1) Trace elem	(1)	(2)	(1)	(1)	(1)	(1)
	1.4	36.	42.4	26.0	32.4	1.	/	/	/	/
e	0.3 5	0.153	0.35	1.1	0. 4	0.46	/	1	/	,
C	32.5	33.2	34.5	25.1	26.3	32.1	13.4	20.5	1.	20.3
	1 4	203	21	33	341	1 5	144	1 4	214	265
	56.5	44.2	4.	1.	22.2	53.	15	162	214	265
	34.	3.5	3.3	23.1	22.2	33.	20.6	30.	2.	203
	66.4	4.6	6.4	25.4	24.	66.6	.1	114	5.5	.02
	6.4	236.4	256.	205.4	20.	114.20	.1	/	5.5	.02
	4.0	44.1	4.0	4.	103	44.1	/	1	/	,
2	12.0	11.1	11.2	4. 14.	13.6	12.0	/	1	/	,
a	0.5	1.420	1.0 0	3.130	3.2 0	0.5 3	4.	1 .1	22.0	1.2
	0.5	1 50	5	2 0	24	6 6	ч. 1	31	111	1.2
	13.0	13.0	13.2	21.1	22.	12.5	13.2	13.2	14.	20.1
	54.	42.3	41.5	144	154	52.	243	133	164	151
	1.2	0. 4	0. 55	11.315	11. 5	1.25	20.2	133	21.	12.2
	0.025	0.030	0.02	0.051	0.052	0.02	20.2	12.	21.	12.2
	0.3 1	0.050	0.32	1.560	1.450	0.360	,	1	,	,
	0.2	1. 20	1.030	0.365	0.406	0.336	,	1	,	,
a	11	3 2	346	25	50	4.3	,	1	,	,
a 2	10. 0	. 40	.610	26.40	26. 0	10.50	30.6	32.2	40.1	26.4
e	23.00	1.0	1.40	51.50	54. 0	22.30	5.	62.	2.3	52.5
C	2. 0	2.520	2.510	5. 50	6.1 0	2.6 0	6.	. 4	10.5	6.4
	2. 0 11. 0	11. 0	11.60	22.30	24.30	11.60	2.5	31.2	43.1	24.4
	2.540	2. 00	2.6 0	4.4 0	4. 00	2.3 0	4.5	5.2	6.	4. 5
	0. 6	0. 1	0. 0	1.163	1.25	0. 3	1.45	1.5	2.0	1.03
	2.4 0	2. 13	2. 54	4.14	4.46	2.522	3.56	4.01	5.35	4.23
	0.3 6	0.3	0.3	0.612	0.660	0.3 4	0.4	0.54	0.64	0.63
	2.1 0	2.150	2.220	3.420	3.6 0	2.130	2.5	2.	3.24	3. 5
	0.46	0.446	0.444	0. 2	0. 5	0.46	0.4	0.52	0.5	0.
	1.350	1.230	1.240	2.120	2.2 0	1.310	1.32	1.3	1.45	2.25
	0.1 0	0.16	0.1 5	0.304	0.32	0.1 4	0.1	0.2	0.2	0.34
	1.210	1.050	1.120	1. 60	2.110	1.210	1.25	1.23	1.24	2.13
	0.1 4	0.164	0.165	0.2 1	0.323	0.1 3	0.20	0.1	0.1	0.34
	1.3 0	0.104	1.040	3.2 0	3.510	1.460	5.3	3.2	4.16	3. 2
2	0.0 4	0.062	0.051	0.5	0.644	0.0	1.35	0.6	1.16	0.6
a	0.0 4 0.151	2.0	1.50	2. 5	1.	0.0	1.55	0.0	1.10	0.0
	0.131	0.206	0.200	45.20	35.10	0.33	.13	.0	4.1	21.06
	1.0	0.200	0.200	. 60	.2 0	1. 0	4.50	2.63	3.20	.41
	0.500	0.304	0.302	2. 30	3.4 0	0.501	4.50	0.6	1.46	2.5
	0.300	0.304	0.502	2. 50	5.4 0	0.301	1.	0.0	1.40	2.3

e e e e a aa aa ae e / e ee . aa a e 04 06, 04 26, 04 2 a 04 1 ae *et al. (200 a).*

. .

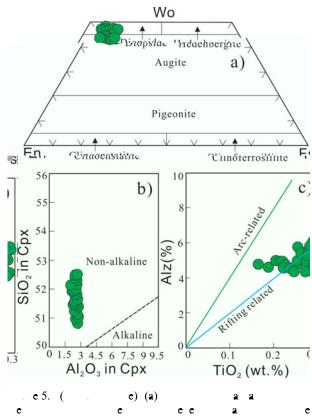
a e 2.	e aa	e acaaca		
a c c	() () 6 /	$^{/}$ $(^{/}$ 6 (1σ) 6 $)$ $(^{)}$	() ¹⁴ / ¹⁴³ / (1σ)	$\begin{pmatrix} 143 & / & \epsilon \\ 144 &) & (t) \end{pmatrix}$
2013 01 3 a a (2013 01 10 a a (2013 03 1 a a (2013 03 2 a a (2013 03 2 a a (2013 03 3 a a (2013 03 3 a a (2013 03 4 a a (1) 3.13 2 0 0.0335 1) 2. 1320 0.0063 1) .06 516 0.0452 1) .65 14 0 0.01	0. 06324(20) 0. 06133 4.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.5124 6 .1 0.512214 1. 0.512445 6.3 0.512450 6.4
ϵ (t) = 10000((¹⁴³ / ¹⁴⁴) e a a e a e e e e e e) $(t)/(^{143} /^{144})$ $(t)-$ 401 a .	$-1) \epsilon (t) \mathbf{a} (/ 6) \mathbf{a} \epsilon$	caa cacaac	aae
c a . ac c a c	a) 0.10 0.08 0.06 - 350 -	Age=485.8+2.5 Ma MSWD=3.1 N=27 550 450 500 490 490 490 480 480 480 480 480 480 480 480 480 48		

= 2 , (. . 4a e / = 3.1). ae a 1 3. a e ea-. e, e e e 4 e a e . ± 4 a a e a e e a e e . . 1(1) 0% ae a e , a . a e a a e (a et al. 2003). aea , a e a a a , e a caca aca e a e a a a. e e . . (2)e ... e., a. 100 200 μ e. a a

e 2, ee . 4). e a a (e ee e e e e ea a e. e e, e 2 e a e 450 e e e a e 2 500 2 2 a e e e e e 21 a a 1 e e e e e 206 23 e ae 2 e e 2 401 ± 2 **a** (= 3.3). e ee 206 **a e a**²⁰ 23 235 e e e ae a e . e e 2 e 2 a e = 1.) (ee 401.4 ± 1.6 **a** (e e a e e 206 .4), e e e e ea a e. ae e e **, 1 3**). e a ae(2

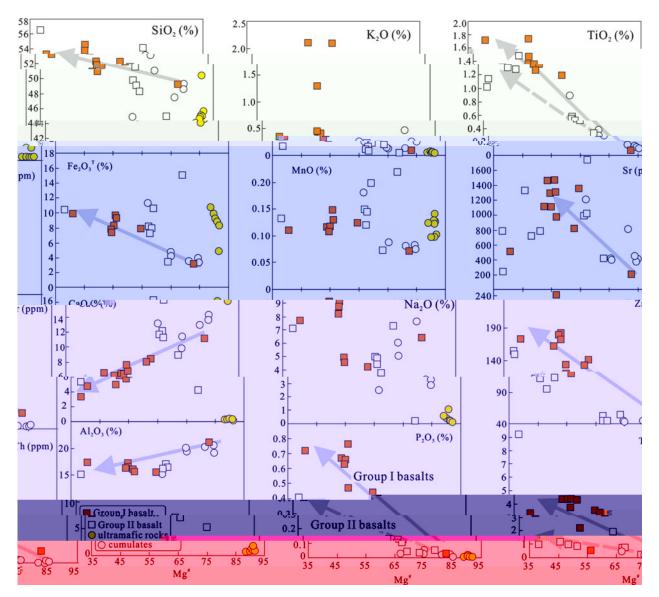
4.b. Mineral compositions

4.b.1. Spinel composition


e a e e e e e . 3). a e 100 300 µ 2 2 e a e e e a e ae a a e . a // / e) a e. 2 3, **e** ae 2 3 a a e a e e e a e a ee 2 e ae . (100 /($^+$)) 44 60 a . (100 a /(e)) 25 61. e a a a e e e a e a e e / e a 2 e (*et al.* 2010). e e e e e e e . e aee e () a ee e e e e e e ee a e e e a e e e a e(a et al. 2013).

4.b.2. Pyroxene compositions

e e e e a e e ee. 6). (e ae e e e 2 a 0.5%) a e (e e e a a e (ae e eaca a c 5aaa ca // e a . e. //e). e e . -2 e e ac ac c e , 46 55 41 4 . 1 (. 5a). e -a a e -eae ea e e 2 e 2 3, 2 **a** 2 . . 5 ,). (

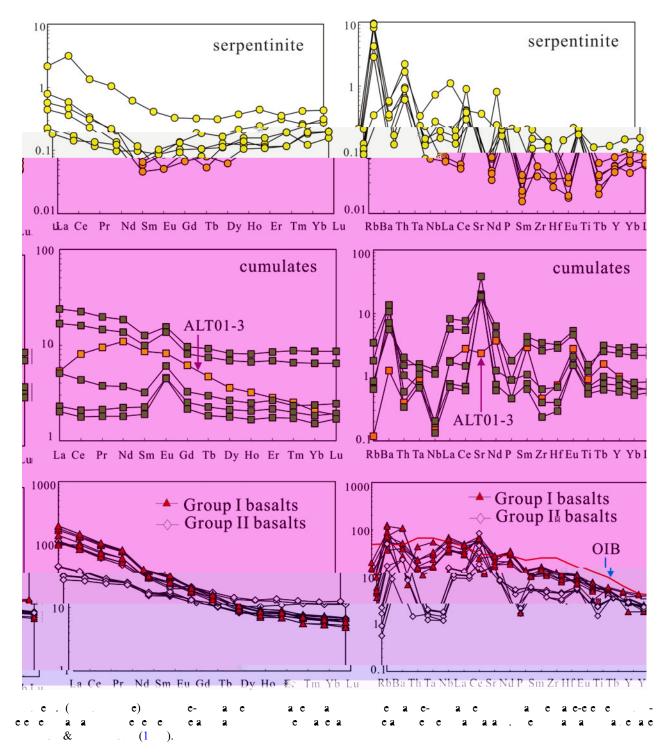

4.c. Whole-rock elemental geochemistry

4.c.1. Serpentinites and cumulates

1 (**a** e 1). e e a e ee a ee e e e (. . <u>6</u>). e 2 aeeae (3103)a) (**a** e 1). e (> 12%) (5 e \mathbf{a}_2 , 2 2 e 2 e 2 a e a aee e 2 ee e (a) a 👘 e a e eee e) (e. . (ee, e ee ae e a). 2 3, **C**_{2 3} a 2, e e e a e e e ee e e aaea e e ee e a e.e e e ee. e e e e ace aeea ee e () a - e e ee) e (**a c** 1). ee, e (e ae ea e ae), ea.e a e a e e (ea e, 2014 e e e & e e a e a e a e 2 , 1).

e a ae ae a 2 45. % 51.2 %, **a** a e_{2 3} (3.24 4.6 %), _{2 3} (1 .3 1 .6%, e e a e 2013 01-3), a (.54 15.42%), 2 $(0.12 \ 0.34\%), a_2 \ (2.1 \ .3 \%, e e a e$ 2013 01-3) **a** $_2$ (0.11 0.46%) a a a a / . . a e e (a e 1).

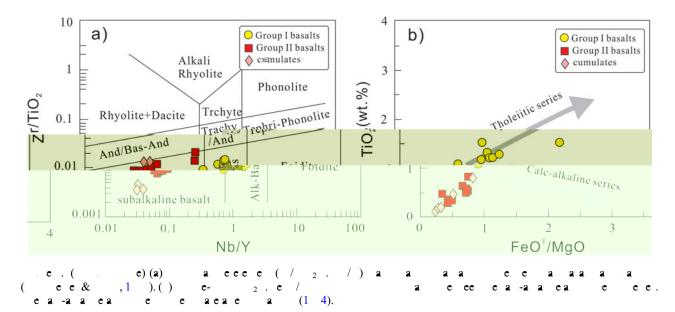
e 6. (e) a e a a a e a a a e a e (\mathbf{a}_2 $_{2}, e_{2}$ $_{3}$, 2, 2, 2 3, , et al. 200 a **a** e **a**)(a e e e a ee e a e e). a ,

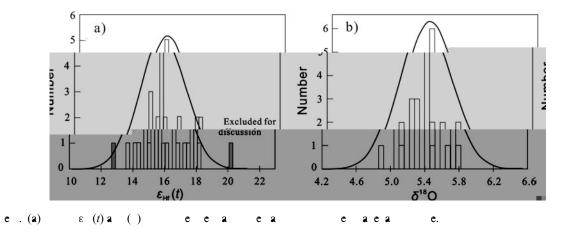

e ee e e e e C e C (**6**). e a e e 2 2 e 5 e a 41 2 e ea e a e = 1.3 2.) a) e e ((a/) ($= 1.1 \ 2.2$). e e a e a (e 2013 01-3 a a a e e e ee e e e e e e . a e e e e - e ee a e) a e a e e e e a-(a e e e a), a e a e a 2 $= 0.2 \ 0.4$) (/ a 2 e a e a e e a a e a 2 2 2 e a.

4.c.2. Basalts

e a a a a e a a a e ₂ a 43.15% 5.65% (e a 52%,

e 1). e e a 2 e e e ee C e e e e e e a _ 2). a e 1 (2 (2 e e C ee _ 2 e 2 e a) 2 e e e e). 2 a (2 e a a 2 e \mathbf{e}_2 2 2, 3 5, 2. ea e ea e e a 3 2 2 e e 1 a a e ea . a ea e e ea 2 2 5, 2, a . <mark>6</mark>). (


a a e 1 a e e a e 2 _ 124 205 2 e e a e 50 60 1 2 aa a a 10 a eee ae a e (a/ ee e 20) a 30 (a e a eae e

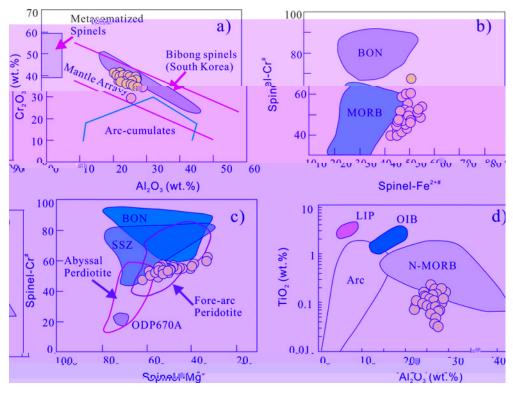


= 0.01.14e a (e a 4 e 6 a $= 1.02 \ 1.21$) (). e e e e 1 e a 0.44 0. e e e e e e e e a e a a 0.11). e e e e e e .).

4.d. Whole-rock Sr-Nd and zircon Hf-O isotopes

e e **e** 2. 1 2 2 2 aa / 6 e 2-(0.0024 0.0452) a (0. 04030 a 0. 0536), e a e e e e / 6 (0. 04015 0. 05111, e a 2 e **a** e¹⁴ /144 2013 03 1). e a ee e 143 0.13 4 a /144 0.0 a e ee 0.512 0 a 0.512 3 a ea 3 (*t*) a . e +6.3+ .5 (e e 2013 03 1 a +1.).

e e a e e (2013 01) (a e e e 2 e e e 2 2 2 2 ae 2 e 11 e. 2 / e a) 3 2 13 20. (= 4 5 a) 2 e e 2 5 5 a e e **a**. e e 16) a e (t) (>3 e e ae 2 e 2 a a e ea a e e e e e e (*t*), ε eaa e ea 15. ea e ea a . 4. 1 ‰ 5. 3‰, a δ e e 2 (). e e e e e $\pm 0.23 \,\%$ δ^1 5.3 2 ea 2 e). (

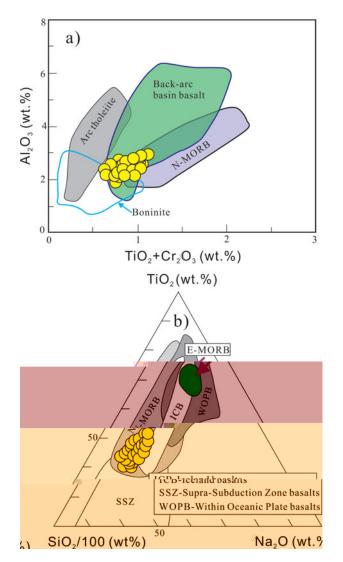

 ~ 400 a e a a e e 1.4 .2 3 (t)e 2 e a e a e ee 2 0 e e 2 6 2 e-2 20 a e e e 2 e e 2 e e e a a e e et al. a e (200).

5. Discussion

5.a. The individual members of the Zhaheba ophiolite

e C e a e 2 e a e C a a 4 a e e e 6 a 2 e С. e 401 а. e e e e 2 e e 2 e 2 e e e a e e $(503 \pm$ e e ea e e e e a (416 ± 3) e e et al. e 2 2 2 e e (al. 200 b, 2012 . 1). a et e ee (401 a) a 6 e e a e (4 a) e e e e) a e ea 2 , e e 2 e 2 e e e 2 e e e e e e a a e. e a a e e a e e 3). e (2 , 1 e . e

C 2 e e e ea e a a e e e a e . 1 e ee), e e (ae, .e. 2 e 2 a e 2 2

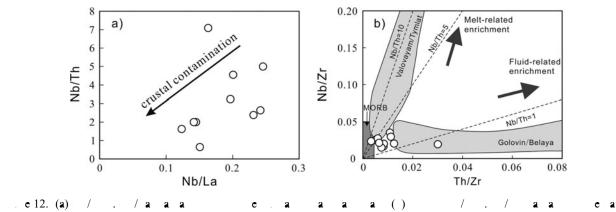


e 10. (%) 2 3 (e) 2 **a a** . (**a**) ₂ ₃ **e** . e a ~ $(100 e^{2+}/(e^{2+}+))$,2000).() .(100 /(+)) e e²⁺ a e & e e, 2001).() .(100 /(+ , 2000). ())) e /(+ e)) & e aea e (a . (100 1 4 e e a e e et al. 1 5). () ₂ e (a e e - 23 a e a e aea e(a e a e & e e, 2001). 2 e a a e a a . e ea 2-

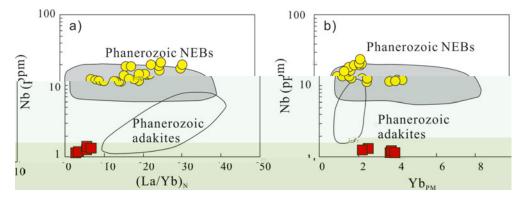
a e (500 4 0 a) (a et al. 2003 . et al. 2015), e e a ea e a e (430 400 a) (a et al. 200 b, 2014 a e e e e e e) a e a e . . . e e (3 0 350 a) (a et al. 2003 . et al. 2006).

5.b. Origin of the serpentinite and cumulates

e e 2 ae e e e a e e a e e 2 ae e " a e 2 2 (e e a , & **e**, 2002 e a et al. 2010).


e 11. (e) (a) 2 2 2 3 2 +2 3 2/100() 2 a **a**2 e e e e a e a e a e e e. e ee a e e a ee e

C 2 ae e a e e e e e e e e e ee e e e C e e a ee e e e e е. e e e e --5 e e ae C e e + 2 2 2 3 3 e e C 2 e ea C ee ₂/100 . 11a). **a** a e 2 a e e e e a e ee e e . 11 e e). e a ae e a a e 2 e e e e (). e e a C е. e a 2 e 2 2


5.c. Petrogenesis of the Devonian basalts

e e e e aa ae e 1 **a** e e .e. 2. 1 (11 24 a a a e e 5 (0.4 0.6%) a e 15), 2 60) **a** (11 15, e 2 2 e (a/ 2 a e e e ae 2 .) (e a a & (& , 2001) (. 13). e e e 2 e a 2 ee e e e 2 (1) a e C e 2 ea e e e 2 e e & e e e (e. 2 2002)(2)a 2 e e e a e a _ & e a a (e <u>6</u>). & **a** et al. 1 2 e 3 2 e e 2 e e 2 e C 2 e e 1 e

e e a e a e e e e e e e e e 2 & 200 e et al. a 2 e (2 / 6 2011). 1 e e e ae a (0. 04120 0. 06133) a e a.e a ε (t)(+1)+ .5). e a e e e e e (3.44 20.4) 2 e ae e $(1.51 \ 2.54)$ e **a**/ 2 (e. . 2 & e **6**). e e e 2 1 e e e. e 2 e e. e 2 e e 2 e 1 2 e e e e e e e e a 2 e a a et al. a (C e C a **6**). 6 e e. 1 e e eae e C eee e 2 e ea e ea e e e eeaea & e e -e e 2000). e a e e e C e e e e e a e 2 & 2 **6**). et al. a al. 2 (200) e e e 2 a 2 e a e e

...e13. (... e) (a) (a/) a () ... a a e a a e a a e a a e a a a 1 a a a e a a e a a e a a e a a e a a e a a a 1 a a a e a e e a e e a

e 1 e a ca. a e a 2 .5) **a** (/ 6) (0. 04120 0. 06133) ε (*t*) (1. a.e., ac a c . c a a ee. (**a** e 2). e ea e e e /⁶) a ϵ (t) **a** e **a** (a e 2 e e . e a a a e e 1 C 2 e 2 2 e a e a a ea e e e e e a 2 e e e e e a a e e e ea e e a . e e e e e 2 ae 2

2 **a** a eaae e a e 2, a (< 0.3),), e 2 e e e e a a e e e e ea e e a e e e 2 , 2002). & e a e 1 1 e a ae ea e a a a e e e 2 2 a a (/ (0. a e) 1.0), (**a**/ a) / (0.6 1.0) $(0.1 \ 0.2)$ a 2 2 e a e . e 2 a a e ae eae a e ea a & , 1 <u>6</u>). (a e e e 2 1 a e aa e 2 2 5) . 14). / a 2 (a (e 1 e 2 e e 2 2 a

. 14). (2 e 2 2 e C 2 e e e ea 1 a 2 a ae e e e е. e 2 ea e e a a e a e a e 2 e e e e e . e e e

5.d. Implications for the Palaeozoic accretion process in eastern Junggar

e ca c eeae ee e . a , e (416 a ... et al. 2014 e ea e .e. et al. 2015), a a e (503 aea *et al.* 2015 4 5 2 a et al. 2003 .) e (400 a) (. . 1). e ace e e e a e e (*et al.* 2014), e 2 a a ea e e e e ea eae a . eae e

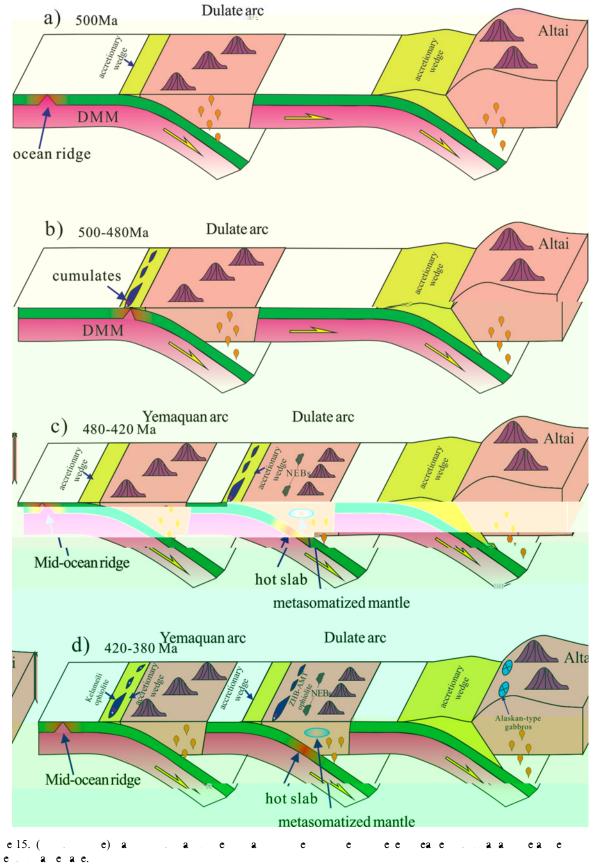
e e e ea e 2 e e 2 e e a e e e e 2 ea e e e e e e ea e e e, e a 2 ea , a ee - ea (et al. 200, 200 a,b a et al. a e a 200 a). e e e e a . . . a a e e e a aa ea (**a** et al. 200 b). 2 eee e a

, e. e e e a a e a e e e aea a a e a e a a ea e. e. ae e e a a ea ae e. e e a a e ea e.

ee, e*et al.* (2015) e e a e a a a - e a e e e e a e a 400 3 0 a a e e a a e a

е. е e a , eae e a a c . c a. e a e e e ae a 460 3 5 a a ea a c. 400 a (a et al. 2006, 200 et al. 200 a et al. 200 et al. 200, 200 a et al. 2012 e et al. 2015). e e a a - e a e ea e , a e-2

e de le a ce a e e 2 ea e . . e e .. e e a aa (e & a e e a e 2002 a et al. 200). e e a 2 2 e a - c a c ac c a e e a e a a a a a . e .e e a e e a a a e (e et al. 2015).


e e e e (ee e 5.), e _ e 1 aa a e aa - a e 2 e e acaacacec . ca 2 2 a ea. e a a . eee e aea e a 1, 15). *et al.* (200, 200 b) e -(e - e. e ea , . a e e a e a ... e e e e е. e e aea e, . 2 e e e a a e -e e e a e a ca . e e (et al. 200). e . е e a a cacce c c c ae e (...e, eee&e.e, 1 1 a, a & , 200 a et al. 2013). eaa e ee e

e e (c. 500 a), e a ae -(1) a a a ea a e a e ea e , a e e e 2 a e **a**-. e a ae a ea e aea a e a e e e e e eae . 15a). e, e a e e e a a e 2 e,a 2 a ea e 2 e e e 2 a e. e

(2)ae a 2 ea 2 e (500 4 0 a), e e e 2 ae e - ea ea e e-a 2 e aea a a ea ee e a e e . e . . 15). . . (e, a e a e 2 e a . e e e e a -2 -a a e a e . e . C a

(3) e (4 0 a ae 2 420 a), e - e (45 a et al. 2015) e e a-ea a. e е .ae a -e e a a e a a **a** a e et al. 2014) e e (440 a е. e a a ee eeae a a e e e 2 a e a a с с с с e a e a a e e ea e e eae e, a e ea **a**e a e , a a e a- ea a е.

e


```
(4) e e a e e a e e a e -
a e a e (420 3 0 a)
( et al. 2014 a et al. 2015). e e
e a- ca
                   .e.,
e 1 aa ( )a 2 aa e.e
        a a c c c c c a -
    e
2
       cca c a
  ea a-eae de
   ea a a a a a e . e
                       2 -
 eale,a al
               e
                   a
                      ea
  e e (400 3 0 a). e e
       e e e
                     ae a-
  ea
  e. e, ea e ea e ...a, a
                       e
 e e la la a
            e e
                       е.
       е .
           e a
                a
e a e a
  - e aacee
                    a ea e
  ee a e e a ele e ...ae-
     e a a e.
```

6. Conclusions

(1) e ae e aea e a e a ~45 a, e e a a a ca c . c a c. 400 a. ., e a a e .e e a е. . ae . a caa ac aea a e e e e a a e e e ae e a e a a e a e . e. e. a a e e e a e eecee claale ee aea e - ca c. a e a a e e a e -...e a e a e a a a e a - e.

a a ca ce (3) e a e a e a cica i c i c **a** . e a e e - a e e ea e e a a e e a a- ca a c a e e a ca. c ca c ...a a ac aca c e e, a ea 🧠 , a- ea 2 2 e ee - ea

Acknowledgements. a e a e ... e e e ae . e ca a aca ac. ca a ae caa c. cac c ae. ea a eaa ee a eea aa e еее a e a a 305 e 2 (2011 06 03-01).

Supplementary material

e _ e e a ae a _ a e, ea e // . . /10.101 / 0016 56 16000042.

References

- , . 1 4. aa e a e e e e e a ea e e e a e e a . Chemical Geology 113, 1 1 204. , . . & , . . 2001. e a e e e e a a a a a a . Journal of Petrology 42, 22 302.

- ,.& ,...2002. e e a a e e e e a a a e a e e a a e e a-
- . Geological Magazine 139, 1 13. , .1 3. ee a a a ee e ea a ea, e a a , a a , ea e, a ea . Geological Society of America Bulletin 105, 15 3 . , . .1 . Ophiolites. e e-
- , ... & , .1 4. a eaaeee a a aa a e- ee e a aa a ae aa. Contributions to Mineralogy and Petrology 86, 54 6.
- 21. , .& , .2011. e e e a a e e e a a e e a e e e e. Geological Society of America Bulletin 123, 3 411.

- , ., , . .& , .1 1. a a ee e eea e e, e a ea ae e. Lithos 27, 25 .

- , . ., , . ., , . & , . . 2011. -caa ca - . Geological Bulletin of China **30**, 150 13 (e e a a).
- a e a e ? Geochimica et Cosmochimica Acta **75**, 504 2.
- Acta 75, 504 2. , , , , , , , , , . . . & , . . 2001. e a a a e e e e a -a e e e e e e e a -e e . Nature 410, 6 1. , ., , . . & , . 2002. a e e e e a a e e (ea) a a e e e e . . Chemical Geology 182, 22 35. , . . & , . . 1 6. e a a e -e e e a a a a e a a a , a a e e . Journal of Geophysical Research: Solid Earth (1978–2012) 101, 11 31 .

- Earth (1978–2012) **101**, 11 31 . , . & , . 2000. ea a a a --e e a a -a a e a a e 2. a -e e a a e a e e - e e e e , e e. Contributions to Mineralogy and Petrology **139**, 20 26.
- a a).
- (e e). Chinese Science Bulletin (Chinese Version) 59, 2213 22.
- e a e e c a e e a e c a e c a e c a c a c c a c a c c a c a c c a c a c a c a c c a c
- Edinburgh: Earth Sciences 91, 1 1 3. , . .& , . . 1 0. a e e a a e a ae e a a . Journal of Petrology **31**, 6 1.
- , ., , , . .& , .2003. **a** e**a** e. **a** e. *Earth* ca ca a Science Frontier 10, 43 56 (ce
- a a). , . ., , . . & , . 2001. a e a a e a e a a a e e, - e a e e a . e .Journal of Petrology 42, 655 1.
- , 16. a a ee-e e e . *Nature* **380**, 23 40.
- , . & . , . 2000. a a e e e e a e ea e e a e e e e e e. Tectonophysics **326**, 255 6.
- ,.«, ae a e **a e**- **e e** . *Lithos* **114**, 1 15.

- , . ., a e, a. Geological Magazine 141, 225 31.
- · ·, and Geoanalytical Research **34**, 11 34.
- a ce ce ca a a a ca a c. Chinese Science Bulletin 58, 464 54.
- , . ., , . ., ea acceeaae
- - . Chinese Science Bulletin **55**, 1535 46. , . . 2003. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. e ee e e e e a a 4, 3.
- **274**, 32 355.
- (ea e e a). Geology 23, 51 4. , .1 . Structure of Ophiolites and Dynamics
- of Oceanic Lithosphere. e, e e e a e a e e, 36 . . . 1 . a e e a e e a e e e e a e e e e e a a e e .
- a a).
- & , . . 200 b. e a e a a e a a e, ea e a, Acta Petrologica Sinica 25, 14 4 1 (e e **a** a).
- $A_{40} = A_{3}$, A_{20} , A_{20}
- . Proceedings of the Ocean Drilling Program, Scientific Results, vol. 176 (e . . a a , e&.. ee), .160. ee a-, e a .

- , . ., . , . ., , . & , . . 200. e e e , . e a a e a e e e a e a e a **a** e. Chinese Science Bulletin **14**, 21 6 1.

 - , . .200. e e a e ca aa a a e a a a e ca ca ca ca .*Lithos* 100, 14 4 . , . .2014. e ce e e -
 - e. Elements 10, 101 . , & , 2001. a e a a e e, -e e a a -a e e, a a a e ae-Mineralogy and Petrology 141, 36 52.
 - , ., ., ., ., .& , .& , . 2013. e e a e e e e a -a e(a) a e e a e e e e e e e e e a. Candonara Bacarado 2 2 2 111 Gondwana Research 24, 3 2 411.
 - Journal of Petrology **37**, 6 3 26.
 - a ca ca ac c , e e a -. e a. Precambrian Research 231, 301 24.
 - Research 192–195, 1 0 20 .
 - , . ., , . .& , .1 1. e e e a eee e e a a. Philosophical Transactions of the Royal
 - Society of London **335**, 3 2.
 - **,** ., e e a a a . Nature 377, 5 5 600.

 - , ..., , ..., , .., , ..., ..., , .. e e . Lithos 206–207, 234 51.
 - e . Reviews of Geophysics 40, 3-1 3-3 .

- a e . Science in China Series D Earth Sciences 52, 1345 5.
- , . . & , . . 1 . e a a e a ea aa a a e a e e . Magmatism in the Ocean Basin (e . . a e & . .), .52 4 . e a e , e a $\frac{42}{2}$ a. 42.
- , , , , & , , 200 . a e e e e e e e e e a ae . Chemical Geology 247, 352 3.

- to Mineralogy and Petrology 133, 1 11.
- *Geology* **114**, 35 51.
- a e e e . Earth-Science Reviews 113, 303 41.
- Geology **20**, 325–43.
- (**a**)? Geoscience Frontiers **5**, 525 36.
- Sciences 32, 102 1 .
- , . ., , . ., , . . & , . . 2013. ac caca a a c c c c c a a a c a c Condugng Research 23, 1316, 41 Gondwana Research 23, 1316 41.
- , . .& , . .2004. a ae a e a a e e e e e a a. Journal of *Geological Society, London* **161**, 33 42.

, . ., , , . ., , ., ., , . ., 200 *a*. - **e a** , ., , . & e a a e a ea e a e e e e a a c.c.a.c., ac c.a., a ca.c. c.a a. International Journal of Earth Sciences 98, 11 21 . , . ., , . ., , ., , ., , .

- , . 1 3. Regional Geology of the Xinjiang Uygur Autonomous Region. e e a -e, .2 145 (e e).
- ., , . ., , . ., , ., , . . & , . .2015. e a a a e a a a a a companya a comp a e e . Journal of Asian Earth Sciences
- 113, 5 .
- , . . & •• e ee **a** Gondwana Research 21, 246 65.
- , , , , .ee

e ee a, a e a Chemical Geology 242, 22 3 . , ., , . ., , . ., , . .& , . 2006. a e a a a a, ea e a a (a) e e a a a e a e a e a . Acta Geologica Sinica **80**, 254 63 (e e a a). , . ., , . ., , . & , .2003. **a** e e e e 2 a,

Chinese Science Bulletin 48, 2231 5. , . ., , . .& . . 2013. e a e a a e e e , e e e e a. Lithos **179**, 263 4. e a e e

, · ·, , , ·, , . ., , . .& , . .2012. e e e e a e a e a e e e e e a e Journal of Asian *Earth Sciences* **52**, 11 33.

, ., , , . . & a a c, a c a , . . . 200 . e e a a e a e - a ea . Acta Petrolo-e e gica Sinica 24, 1054 5 (

a a). ,.& ,..16. e a e a Annual Review of Earth and Planetary Sciences 14, 4 3 5 1.